
 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 1/14

IVI Instrument Driver
Programming Guide

(Delphi Edition)
June 2012 Revision 2.0

1- Overview

1-1 Recommendation Of IVI-COM Driver

Although it is hard to say that Embarcadero Delphi is suitable for using IVI-COM instrument

drivers, it is still possible to use COM components with COM wrapper classes. Comparing with
Microsoft development environment, there are a lot of weak points for using Microsoft COM,

however IVI-COM is still easier to use than using IVI-C instrument drivers that do not provide
Pascal header files.

Therefore this guidebook recommends using IVI-COM instrument drivers through the COM

wrapper classes.

Notes:

 This guidebook shows examples that use KikusuiPwx IVI instrument driver (KIKUSUI PWX series
DC Power Supply). You can also use IVI drivers for other vendors and other models in the same
manner.

 This guidebook describes how to create 32bit (x86) programs that run under Windows7 (x64),
using Embarcadero Delphi XE2.

1-2 IVI Instrument Class Interface

When using an IVI instrument driver, there are two approaches – using specific interfaces

and using class interfaces. The former is to use interfaces that are specific to an instrument

driver and you can utilize the most of features of the instrument. The later is to utilize
instrument class interfaces that are defined in the IVI specifications allowing to utilize

interchangeability features, but instrument specific features are restricted.

Notes:

 The instrument class to which the instrument driver belongs is documented in Readme.txt for
each of drivers. The Readme document can be viewed from Start buttonAll
ProgramsKikusuiKikusuiPwx menu.

 If the instrument driver does not belong to any instrument classes, you can't utilize class
interfaces. This means that you cannot develop applications that utilize interchangeability

features.

2- Example Using Specific Interface

Here we introduce an example using specific interfaces. By using specific interfaces, you can

utilize the maximum feature (or model specific functions) provided by the driver but you have
to spoil interchangeability.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 2/14

2-1 Creating Application Project

To simplify explanation, this guidebook shows you an example of the simplest console
application. After launching Delphi XE2 IDE, choose File | New | Other... menu to bring

up the New Items dialogue. Select Delphi Projects and then Console Application.

The project has no file names immediately after it is created. Choose File | Save Project

As... menu then give guideAppDelphi as the project file name. As for Delphi, the main

program is placed in the .dpr file having the same file name with project.

2-2 Importing Type Libraries

What you should do first after creating a new project is, import type libraries for the IVI-COM
instrument driver that you want to use. To import them, use a command-line tool

TLIBIMP.EXE (bundled with Delphi).

Launch Command Prompt, and then use cd (change directory) command to go to the
directory where the project files previously created are located. If the current directory

display (using dir command) shows the project previously saved, it is the correct location.

Figure 2-1 Working At Project Directory

Now execute the following command on the Command Prompt.

tlibimp -P "C:/Program Files (x86)/IVI Foundation/IVI/Bin/kipwx.dll"

Then, multiple wrapper modules related to IVI and VISA will be generated. (Although a lot of
files are generated, you don't use all files.)

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 3/14

Figure 2-2 Generating kipwx TypeLib wrapper

Again back to the Delphi IDE, add the files to your project.

Right-click on guideAppDelphi.exe name in the Project Manager window to show the
context menu, select Add... menu, select KikusuiPwxLib_TLB.pas from the previously

generated files, then add it to the project. It will be okay if the file has been added in the

Project Manager.

The type library wrapper module to add contains dependency to VCL (Visual Component

Library). Therefore, when adding such module to the project that does not contain
dependency to VCL, a confirmation message like below may be shown. Dependency to VCL is

required so select Yes.

Figure 2-3 Confirmation for Adding VCL

Figure 2-4 Adding TLB Wrapper

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 4/14

It will be okay if the file has been added in the Project Manager. Also, confirm that
KikusuiPwxLib_TLB is automatically added at uses clause.

Open the main program in the project, add ComObj and Windows units to the existing uses

clause.

uses
 System.SysUtils, ComObj, Windows,
 KikusuiPwxLib_TLB in 'KikusuiPwxLib_TLB.pas';

2-3 Creating Object and Initializing Session

Add the following variable declarations at the var block in the main program.

var
 hr: HRESULT;
 instr: IKikusuiPwx;

In the main program's try block, write the following code fragments that opens a session

for instrument driver object and close it. Here assume that an instrument (Kikusui PWX

series DC supply) having IP address 192.168.1.5 connected with LAN interface.

 instr:= CoKikusuiPwx.Create;
 hr:= instr.Initialize('TCPIP::192.168.1.5::INSTR', true, true, '');
 hr:= instr.Close();

When creating a driver object, use Create method of CoKikusuiPwx component class.

Just creating the object does not communicate with instrument, so furthermore invoke
Initialize method and Close method.

Once the object is created with Create, its reference count is 1 at the point of time. When

the scope of the variable instr has been lost (at the end of try block), the reference

count is decremented. The object will be destroyed when the reference count becomes 0.

Now let's talk about the parameters for the Initialize method. Every IVI-COM

instrument driver has an Initialize method that is defined in the IVI specifications. This

method has the following parameters.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 5/14

Table 2-1 Params of Initialize Method

Parameter Type Description

ResourceName WideString VISA resource name string. This is decided according to
the I/O interface and/or address through which the
instrument is connected. For example, a LAN-based
instrument having IP address 192.168.1.5 will be
TCPIP::192.168.1.5::INSTR (when VXI-11case).

IdQuery WordBool Specifying TRUE performs ID query to the instrument.

Reset WordBool Specifying TRUE resets the instrument settings.

OptionString WideString Overrides the following settings instead of default:

RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports DriverSetup features.

ResourceName specifies a VISA resource. If IdQuery is TRUE, the driver queries the
instrument identities using a query command such as "*IDN?". If Reset is TRUE, the

driver resets the instrument settings using a reset command such as "*RST".

OptionString has two features. One is what configures IVI-defined behaviours such as

RangeCheck, Cache, Simulate, QueryInstrStatus, RecordCoercions, and

Interchange Check. Another one is what specifies DriverSetup that may be

differently defined by each of instrument drivers. Because the OptionString is a string

parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

(DriverSetup=12345 is only an imaginary parameter for explanation.)

Names and setting values for the features being set are case-insensitive. Since the setting
values are Boolean type, you can use any of TRUE, FALSE, 1, and 0. Use commas for

splitting multiple items. If an item is not explicitly specified in the OptionString
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are TRUE for RangeCheck and Cache, and FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It

can specify items that are not defined by the IVI specifications when invoking the
Initialize method, and its purpose and syntax are driver-specific. Therefore, specifying

the DriverSetup must be at the last part on the OptionString parameter. Because the

contents of DriverSetup are different depending on each driver, refer to driver's Readme

document or online help.

2-4 Closing Session

To close instrument driver session, use the Close method.

2-5 Execution

You can execute the previous codes for the time being.

program guideAppDelphi;

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 6/14

{$APPTYPE CONSOLE}

{$R *.res}

uses
 System.SysUtils, ComObj, Windows,
 KikusuiPwxLib_TLB in 'KikusuiPwxLib_TLB.pas';

var
 hr: HRESULT;
 instr: IKikusuiPwx;
begin
 try
 { TODO -oUser -cConsole Main : Insert code here }
 instr:= CoKikusuiPwx.Create;
 hr:= instr.Initialize(
 'TCPIP::192.168.1.3::INSTR', true, true, 'QueryInstrStatus=1');

 hr:= instr.Close();

 except
 on E: Exception do
 Writeln(E.ClassName, ': ', E.Message);
 end;

end.

In this example codes, content of the main program is executed linearly. If the instrument is
actually connected and the Initialize method call has succeeded, the program will finish

silently. However, if a communication problem has occurred or the VISA library is not

configured properly, an error code will be returned to HRESULT.

How to handle errors (exception) is explained later.

2-6 Repeated Capabilities, Output Collection

In case of IVI drivers for such as power supply or oscilloscope, the driver is designed
assuming the instrument has multiple channels. Therefore for properties and methods that

access instrument settings , there are a lot of cases that Repeated Capabilities (or Collection)
are implemented. As for instrument drivers of DC power supplies, it is the Output collection.

For the case of KikusuiPwx IVI-COM driver, its concept is in KikusuiPwxOutputs and

KikusuiPwxOutput. The plural name is the collection and singular name is each item (1 or

more items) which may exist in the collection. In general an IVI instrument driver for DC

power supply is designed assuming the instrument is a multi-track model.

 They have the same name except for differences plural and singular forms. Like this, a
component that has a plural name is generally called as Repeated Capabilities in the IVI spec.

(Also called as Collection in COM terminology). The COM interface having plural name such
as IKikusuiPwxOutputs normally has Count, Name, and Item properties (all read-only).

Count property returns number of objects, Name property returns the name of the indexed

object, and Item property returns reference to the object specified by a name. .

The following code example controls the output channel that is identified by "Output0" for

the Kikusui PWX series DC supply.

var
...
 { 変数を追加 }
 outputs: IKikusuiPwxOutputs;
 output: IKikusuiPwxOutput;

...

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 7/14

begin
 ...
 hr:= instr.get_Outputs(outputs);

 hr:= outputs.get_Item('Output0', output);

 hr:= output.set_VoltageLevel(20.0);
 hr:= output.set_CurrentLimit(2.0);
 hr:= output.set_Enabled(true);

end;

Once the IKikusuiPwxOutput interface has been acquired, there is no difficulty at all.

The VoltageLevel and the CurrentLimit properties set voltage level and current limit

settings respectively. The Enabled property switches output ON/OFF state.

Notes:

 In contrast with Visual Basic or C#, when using COM interfaces derived directly from IUnknown
(or incompatible with Automation) in Delphi, you cannot treat properties as if object's data
members. To access properties, you need use accessor methods that have set_(when setting) or
get_(when getting) prefixes. This is because all the methods and accessor methods commonly
have the unified return value - HRESULT.

 Similarly, any methods having an imaginary return value do not allow to receive the value with
assignment to the left side value (using a := operator), and the value must be received through

the reference at the last parameter of each method call.

Mind the grammar for acquiring the IKikusuiPwxOutput interface. This example here

acquires the IKikusuiPwxOutputs interface though the Output property of the

IKikusuiPwx interface, then acquires IKikusuiPwxOutput interface by using the Item

property.

Now mind the parameter passed to the Item property. This parameter specifies the name

of the single Output object to be referenced. Actual available names (Output Name) are

however different depending on drivers. For example, KikusuiPwx IVI-COM driver uses an
expression like "Output0". However other drivers, even if being IviDCPwr class-compliant,

may have different names. One instrument driver, for example, may use an expression like
"Channel1". Although available names on a particular instrument driver are normally

documented in the driver's online help, you can also check them out by writing some test
codes shown below.

var
 add variables below
 n: longint;
 c: longint;

 name: WideString;

begin
...

 hr:= outputs.get_Count(&c);
 for n:=1 to c do
 begin
 outputs.get_Name(n, name);
 Writeln (name);
 end;

...

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 8/14

The Count property returns number of single objects that the repeated capabilities have.

The Name property returns the name of single object for the given index. The name is

exactly the one that can be passed to the Item property as a parameter. In the above

example, the codes iterate from the index 1 to Count by using the for block. Mind that the

index numbers for the Name parameter is one-based, not zero-based.

3- Error Handling

In the previous examples, there was no error handling processed. However, setting an out-
of-range value to a property or invoking an unsupported function may generate an error

from the instrument driver. Furthermore, no matter how the application is designed and

implemented robustly, it is impossible to avoid instrument I/O communication errors.

When using IVI-COM instrument drivers, every error generated in the instrument driver is

transmitted to the client program as a COM exception. In case of Delphi, however, HRESULT
has to be validated for each method call to check if a COM exception is generated.. Now let's

change the example of setting voltage and current as follows.

 try
 { TODO -oUser -cConsole Main : Insert code here }
 instr:= CoKikusuiPwx.Create;
 hr:= instr.Initialize(
 'TCPIP::192.168.1.5::INSTR',
 true,
 true,
 'QueryInstrStatus=1');
 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 hr:= instr.get_Outputs(outputs);
 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 hr:= outputs.get_Item('Output0', output);
 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 hr:= output.set_VoltageLevel(20.0);
 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 hr:= output.set_CurrentLimit(2.0);
 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 hr:= output.set_Enabled(true);
 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 hr:= instr.Close();
 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 except
 on E: EOleSysError do
 Writeln(Format('Error:0x%08x', [E.ErrorCode]));
 on E: Exception do
 Writeln(E.ClassName, ': ', E.Message);

 end;

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 9/14

In this example, HRESULT value is validated after each method call. For example, if the name
passed to the Item property is wrong, if an out-of-range value is passed to VoltageLevel,

or if an instrument communication error is generated, a negative value will be returned as
HRESULT. In the example, when an exception is generated, it create an EOleSysError

object and raises it with raise statement. At the except block, it extracts the ErrorCode

(the value of HRESULT) embedded in the thrown EOleSysError object, then create a

simple message displaying the error code in the console.

Notes:

 The Delphi document says that a COM exception (HRESULT < 0) generated through COM
interfaces throws an EOleException exception, however it is true only when using automation-
compatible interfaces derived from IDispatch. Every COM interface defined by IVI-COM and VISA
COM is a custom interface directly derived from IUnknown, therefore EOleException will not be

thrown by framework.

4- Example Using Class Interface

Now we explain how to use class interfaces. By using class interfaces, you can swap the

instruments without recompiling/relinking your application codes. In this case, however, IVI-
COM instrument drivers for both pre-swap and post-swap models must be provided, and

these drivers both must belong to the same instrument class. There is no interchangeability
available between different instrument classes.

4-1 Virtual Instrument

What you have to do before creating an application that utilizes interchangeability features is
create a virtual instrument. To realise interchangeability features, you should not write

codes that are very specific to a particular IVI-COM instrument driver (e.g. creating an object

instance directly as KikusuiPwx type) and should not write a specific VISA resource name
such as "TCPIP::192.168.1.5::INSTR". Writing them directly in the application spoils

interchangeability.

Instead, the IVI-COM specifications define methods to realise interchangeability by placing an

external IVI configuration store. The application indirectly selects an instrument driver
according to contents of the IVI Configuration Store, and accesses the indirectly loaded

driver through the class interfaces.

The IVI Configuration Store is normally C:/ProgramData/IVI Foundation/IVI
/IviConfigurationStore.XML file and is accessed through the IVI Configuration Server DLL.

This DLL is mainly used by IVI instrument drivers and some VISA/IVI configuration tools, not
by end-user applications. Instead, you can edit IVI driver configuration by using NI-MAX (NI

Measurement and Automation Explorer) bundled with NI-VISA or IVI Configuration Utility

bundled with KI-VISA.

Notes:

 As for how to edit virtual instrument settings using NI-MAX, refer to "IVI Instrument Driver

Programming Guide (LabVIEW Edition or LabWindows/CVI Edition)".

This guidebook assumes that a virtual instrument having the logical name mySupply is

already created, using KikusuiPwx driver, and using a VISA resource "

TCPIP::192.168.1.5::INSTR ".

4-2 Creating Application Project

Similarly to the example using specific interface, choose File | New | Other... menu and
create a new Console Application project..

The project has no file names immediately after it is created. Choose File | Save Project

As... menu then give guideAppDelphi_DCPwr as the project file name.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 10/14

4-3 Importing Type Libraries

What you should do first after creating a new project is, import type libraries for the IVI-COM
instrument driver that you want to use. Again use TLIBIMP.EXE.

Launch Command Prompt, and then use cd (change directory) command to go to the
directory where the project files previously created are located. If the current directory

display (using dir command) shows the project previously saved, it is the correct location.

Figure 4-1 Working At Project Directory

Now execute the following command on the Command Prompt.

tlibimp -P "C:/Program Files (x86)/IVI Foundation/IVI/Bin/IviDCPwrTypeLib.dll"

Figure 4-2 Generating IviDCPwr TypeLib wrapper

Continuously execute the following command on the Command Prompt.

tlibimp -P "C:/Program Files (x86)/IVI Foundation/IVI/Bin/IviSessionFactory.dll"

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 11/14

Figure 4-3 Generating IviSessionFactory TypeLib wrapper

Again back to the Delphi IDE, add the files to your project. Right-click on

guideAppDelphi_DCPwr.exe name in the Project Manager window to show the context menu,

select Add... menu, select IviDCPwrLib_TLB.pas and
IVISESSIONFACTORYLib_TLB.pas from the previously generated files, then add them to

the project. It will be okay if the files have been added in the Project Manager

Figure 4-4 Adding TLB Wrappers

Open the main program in the project, add ComObj and Windows units to the existing uses

clause.

uses
 System.SysUtils, ComObj, Windows,
 IviDCPwrLib_TLB in 'IviDCPwrLib_TLB.pas',
 IVISESSIONFACTORYLib_TLB in 'IVISESSIONFACTORYLib_TLB.pas';

4-4 Creating Object and Initializing Session

After completing type library import, write the code fragments in the button handler. (Here,
write the complete codes including exception handling previously mentioned.)

uses
 System.SysUtils, ComObj, Windows,

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 12/14

 IviDCPwrLib_TLB in 'IviDCPwrLib_TLB.pas',
 IVISESSIONFACTORYLib_TLB in 'IVISESSIONFACTORYLib_TLB.pas';

var
 hr : HRESULT;
 unk : IInterface;
 sf : IIviSessionFactory;
 instr : IIviDCPwr;
 outputs : IIviDCPwrOutputs;
 output : IIviDCPwrOutput;
begin
 try
 { TODO -oUser -cConsole Main : Insert code here }
 sf:= CoIviSessionFactory.Create;
 hr:= sf.CreateDriver('mySupply', unk);
 hr:= unk.QueryInterface(IID_IIviDCPwr, instr);

 hr:= instr.Initialize('mySupply', true, true, '');

 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 hr:= instr.get_Outputs(outputs);
 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 hr:= outputs.get_Item('TracK_A', output);
 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 hr:= output.set_VoltageLevel(20.0);
 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 hr:= output.set_CurrentLimit(2.0);
 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 hr:= output.set_Enabled(true);
 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 hr:= instr.Close();
 if FAILED(hr) then
 raise EOleSysError.Create('', hr, 0);

 except
 on E: EOleSysError do
 Writeln(Format('Error:0x%08x', [E.ErrorCode]));
 on E: Exception do
 Writeln(E.ClassName, ': ', E.Message);
 end;
end.

Let's explain from the beginning.

4-5 Creating Object and Initializing Session

In contrast using specific interfaces, any dependency to specific components such as
KikusuiPwx cannot be written. Instead, it creates an instance of SessionFactory object,

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 13/14

and indirectly create a driver object that is configured in the IVI Configuration Store by using
CreateDriver method.

At first, notice that any type names beginning with Kikusui are not used. This example code

no longer has dependency on KikusuiPwx.

Now create an IviSessionFactory object, then obtain the reference to

IIviSessionFactory interface.

 sf:= CoIviSessionFactory.Create;

Next, invoke the CreateDriver method passing the IVI Logical Name (Virtual Instrument).

The created object is returned as a pointer to IUnknown interface, so prepare a variable

unk as IUnknown receiving the pointer value.

 hr:= sf.CreateDriver('mySupply', unk);

If succeeded to create a driver object then the returned HRESULT shall be 0. At the point of
time spUnk is pointing to the IUnknown interface living inside the KikusuiPwx driver object.

However we instead reference the IIviDCPwr interface storing into instr.

 hr:= unk.QueryInterface(IID_IIviDCPwr, instr);
 { instr:= unk as IIviDCPwr; you can write like this too }

Notes:

 Because CreateDriver method has a capability to return arbitrary instrument driver and
arbitrary instrument class interface, so it syntactically returns IUnknown pointer. In many

instrument driver implementations, interfaces such as IUnknown, IIviDriver, IIviDCPwr are

all equivalent pointer value, but as a COM's rule it is not always true. (An instrument driver
implementation using aggregate may actually return different pointers.) Therefore in the above
example, the IUnknown interface shall be referenced once, and explicitly reference the
IIviDCPwr interface with QueryInterface method.

 In Delphi, only the IUnknown interface wrapper is renamed to IInterface.

If IVI Configuration Store is properly configured, the code will execute without generating

exceptions. However, at this point of time, it has not communicate with the instrument yet.
The DLL of IVI -COM driver is just loaded.

Then invoke Initialize method. At this point of time, communications with the

instrument begins. The 1st parameter to Initialize method was originally a VISA address

(VISA IO resource) but, here it shall be the IVI Logical Name. The IVI Configuration Store
already knows the linked info concerning to this Logical Name, such as Hardware Asset,

therefore the VISA address specified there will be actually applied.

hr:= instr.Initialize('mySupply', true, true, '');

As for IviDCPwr class, the Output object of DC power supply is found in the Outputs

collection. Similarly to the example of using specific interface, it obtains the reference to the
single Output object from the collection. In this case, the interface type is
IIviDCPwrOutput instead of IKikusuiPwxOutput.

 hr:= instr.get_Outputs(outputs);
 hr:= outputs.get_Item('TracK_A', output);

 hr:= output.set_VoltageLevel(20.0);

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 14/14

 hr:= output.set_CurrentLimit(2.0);
 hr:= output.set_Enabled(true);

Mind the parameter that is passed to Item parameter. This parameter specifies the name of
single Output object that you want to reference to. In the example using specific interfaces

it passed Physical Name that may be different by driver implementation basis, but not here.

This example cannot use such Physical Names very specific to an instrument driver

implementation (in fact it is possible to use but shall not to avoid spoiling interchangeability),
so we use a Virtual Name.

The virtual name "Track_A" that is used in the above example is what specified to map to

the physical name "Output0" in the IVI Configuration Store.

4-6 Exchanging Instrument

Example shown so far were set to use kipwx instrument driver as the virtual instrument

configuration. Now what happens if changing the instrument to the one that is hosted by

AgN57xx driver (Agilent N5700 series DC Power Supply)? In this case, you don't have to
recompile/relink your application, however you have to change the configuration for IVI

Logical Name (virtual instrument). Basically the configuration shall change:

 Software Module in Driver Session tab (kipwxAgN57xx)

 map target of Virtual Names (Output0Output1)

 IO Resource Descriptor in Hardware Asset (changing to the VISAaddress of post-swap

instrument)

 Once the configuration is properly set, the above example will function with the post-

swap instrument without having to recompile.

Once the configuration is properly set, the above example will function with the post-swap
instrument without having to recompile.

Notes:

 For how to configure virtual instruments, refer to "IVI Instrument Driver Programming Guide
(LabVIEW Edition or LabWindows/CVI Edition)".

 The interchangeablity feature utilizing IVI class drivers does not guarantee the correct operation
between pre-swapping and post-swapping instruments. Please make sure to confirm that your

system correctly functions after swapping the instruments.

IVI Instrument Driver Programming Guide
Product names and company names that appear in this guidebook are trademarks or registered
trademarks of their respective companies.
©2012 Kikusui Electronics Corp. All Rights Reserved.

