
 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 1/21

IVI Instrument Driver
Programming Guide

(LabVIEW Edition)
June 2012 Revision 2.1

1- Overview

1-1 Recommendation Of IVI-C Driver

LabVIEW has a capability to import IVI-C instrument drivers. Although it is possible to use

IVI-COM instrument drivers directly, it is much easier to program using IVI-C instrument
drivers if they are supported. (Kikusui IVI instrument drivers contain both IVI-COM and IVI-C

instrument drivers.)

Therefore this guidebook recommends using IVI-C instrument drivers.

Notes:

 This guidebook shows examples that use KikusuiPwx IVI instrument driver (KIKUSUI PWX series
DC Power Supply). You can also use IVI drivers for other vendors and other models in the same
manner.

 This guidebook describes how to create 32bit (x86) programs that run under Windows7 (x64),
using LabVIEW 2011 (32bit edition).

1-2 IVI Instrument Class Interfaces

When using an IVI instrument driver, there are two approaches – using specific interfaces

and using class interfaces. The former is to use interfaces that are specific to an instrument

driver and you can utilize the most of features of the instrument. The later is to utilize
instrument class interfaces that are defined in the IVI specifications allowing to utilize

interchangeability features, but instrument specific features are restricted.

Notes:

 The instrument class to which the instrument driver belongs is documented in Readme.txt for
each of drivers. The Readme document can be viewed from Start buttonAll
ProgramsKikusuiKikusuiPwx menu.

 If the instrument driver does not belong to any instrument classes, you can't utilize class
interfaces. This means that you cannot develop applications that utilize interchangeability

features.

1-3 Installing LabVIEW Instrument Driver Import Wizard

In order to writes program codes that calls IVI-C instrument driver in LabVIEW, you need
generate a set of LabVIEW VI libraries (LabVIEW IVI-C wrapper) by using LabVIEW

Instrument Driver Import Wizard that imports an IVI-C driver. The Import Wizard is not
a part of LabVIEW, you need download from the following site and then install it.

https://lumen.ni.com/nicif/us/infolvinstdriver/content.xhtml

1-4 Installing IVI Compliance Package

In order to make the LabVIEW IVI-C wrapper generated with the Import Wizard function ,

NI IVI Compliance Package is required as a runtime environment. IVI Compliance

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 2/21

Package is not included in LabVIEW, so you need separately download from the following site

then install it.

http://joule.ni.com/nidu/cds/view/p/id/2589

2- Importing IVI-C Driver .fp File

Here we describe how to import the IVI-C driver so that it can be used with LabVIEW

environment . The driver import is required when using specific interfaces described in the
next chapter. When using class interfaces described in the more next chapter does not

require it.

2-1 Instrument Driver Import Wizard

Because an IVI-C instrument driver is provided as the same formats with legacy VXI

Plug&Play instrument drivers (.fp, .h, .sub, and .dll), it cannot be used directly from LabVIEW
environment. Therefore, it is required to import the driver interfaces converting to the

LabVIEW-compatible formats (.vi or.llb).

To import the instrument driver, use the above-mentioned LabVIEW Instrument Driver

Import Wizard.

After launching LabVIEW with the condition that the Instrument Driver Import Wizard is
being installed, a new menu item - Tools | Instrumentation | Import

LabWindows/CVI Instrument Driver... is already added so select it. Then, at the first
screen you will see Basic/Advanced choice, so select Advanced.

Figure 2-1 Import Wizard - Welcome screen

Click Next button and you will be asked to enter a .fp (Function Panel) file, so select

kipwx.fp that is placed in C:/Program Files (x86)/IVI Foundation/IVI/Drivers/kipwx

directory.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 3/21

Figure 2-2 Import Wizard - Select Function Panel (.fp) File

The .h file (C language header file) and.sub file (attribute info file) will be automatically set.
Click Next button, then you will be asked for the file type to be generated. Here, just

confirm that every item is selected.

Figure 2-3 Import Wizard - Select Files To Generate

Click Next button more, the you will see a screen for settings review, then confirm each item
- Driver Group, Driver Prefix, Shared Library DLL.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 4/21

Figure 2-4 Import Wizard - Review Instrument Driver Settings

Here, there are a couple of important items (techniques for avoiding potential issues Import

Wizard has) to take care.

Driver Group

Specifies an instrument class that the IVI instrument driver belongs to. KikusuiPwx (kipwx)
IVI instrument driver is IviDCPwr class -compliant (IVI DC Power Supply), so choose the

one.

Notes:

 When importing an IVI driver created with Nimbus (IVI-COM/IVI-C instrument driver development
tool), the default choice of this item may be VXI Plug&Play. In this case, you need select the

correct instrument class by hands by according to the instrument driver.

Driver Prefix

Confirm that it has the same base file name as the .fp that was specified at first.

Shared Library or DLL

Specifies the driver DLL file name. As default, a wildcard expression such as kipwx_32.* (or
kipwx_64.* for 64bit driver). But here, click Browse... button to explicitly specify the correct

DLL file name. The DLL is placed in C:/Program Files (x86)/IVI Foundation/IVI/BIN

directory.

Notes:

 As for IVI instrument drivers created with Nimbus, the 64bit driver name is like <prefix>_64.dll,
but the 32bit driver name is like <prefix>.dll having no _32 suffix. Therefore, leaving the default
wildcard such as <prefix>_32.* will not match with the actual DLL file, resulting to generate the

wrapper that will not work normally.

Click Next button and you will see a screen where you select VIs to be generated. If you

see the following warning message, the above mentioned DLL file name may be incorrect.
In this case close the warning message with the upper-right [X] button, then retry to specify

the DLL file or confirm the installation condition of the IVI driver.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 5/21

Figure 2-5 Import Wizard - Shared Library or DLL Not Found

If DLL file is correctly specified, functions will be extracted, and you will see the function tree
screen shown below.

Figure 2-6 Import Wizard - Select VIs To Generate

All the functions are detected as default, click Next to proceed.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 6/21

Figure 2-7 Import Wizard - Select, Create, & Edit Document Conversion Tasks

Here you specify the conversion condition for documents (mainly context help). Most of

conversion are what replace "VI" with "function". It is not an important stuff and
troublesome if being prompted for asking convert or not, so uncheck Show Prompts here.

By clicking Next more, the summary of conversion will be shown so proceed to convert

(import).

After the conversion is complete, the kipwx sub-directory will be created under the

LabVIEW's default instrument driver directory (normally C:/Program Files
(x86)/National Instruments/LabVIEW 2011/instr.lib). There, the VI library file

(kipwx.llb), and multiple palette menu files(.mnu) are generated. The set of these files is the
IVI-C wrapper that can be used directly from LabVIEW.

The generated kipwx IVI-C wrapper can be referenced through the Instrument I/O functions

palette on the LabVIEW block diagrams.

Note:

 The generated .llb file is a wrapper module to the IVI-C driver, and not a real instance of the
instrument driver. Therefore, the IVI instrument driver must be installed on the target machine
when you run the completed application.

 When installing the IVI instrument driver to the target machine, use the driver's original installer
as well as installing to the development machine. Just copying DLLs alone will not work correctly.

 To the target machine, IVI Compliance Package must be also installed as well as LabVIEW

Runtime Engine.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 7/21

3- 2- Example Using Specific Interfaces

Here we introduce an example using specific interfaces. By using specific interfaces, you can

utilize the maximum feature (or model specific functions) provided by the driver but you have
to spoil interchangeability.

3-1 2-2 Adding Controls and Functions

First, create a new application. Open the Front Panel window, place an error in cluster and
an error out cluster.

Figure 3-1 Front Panel

Next, open the Block Diagram window, then open the function palette for the ki4800 driver
(wrapper). The function palette will be found through the context menu Instrument

I/O Instr Drivers kipwx.

Figure 3-2 kipwx Function Palette

On the block diagram, place Initialize With Options.vi and Close.vi.

Furthermore place Configure Voltage Level.vi, Configure Current Limit.vi,

and Configure Output Enabled.vi, which will be found in ConfigurationOutput

palette,

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 8/21

Figure 3-3 Block Diagram

3-2 2-3 Parameter Settings

Here, assuming that Kikusui PWX Series DC Power Supply on the network is configured as IP
address 192.168.1.5, pass the parameters -- resource name, id query, and reset
device to Initialize With Options.vi.

Figure 3-4 Params for Initialize With Options

Subsequently, add parameters that set voltage, current, and output. Here, we set 20V/2A

and the output ON.

Figure 3-5 Params for Configure Functions

Here, mind the blank string commonly passed to the three VIs. This is the target channel

name for the DC power supply to be controlled. Details are described later.

Finally, wire the controls/functions between error in and error out clusters as like the

picture below. Not only connecting error ins/outs, but make sure to connect instrument

session (handle) wires also.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 9/21

Figure 3-6 Open/Configure/Close

3-3 Program Execution

You can execute the previous codes for the time being. Initialize With Options.vi

resets the instrument settings since the Reset Device parameter is set to TRUE. As you

execute the program, I/O communications with the instrument immediately starts. If the
instrument is actually connected with succeesing Initialize With Options and Close

calls, the error code shown on the error out cluster will be 0. If a communication problem
has occurred or the VISA library is not configured properly, an exception is generated and its

information will be shown on the error out cluster. By selecting Context Menu Explain

Error, you can see the detail information on the explain error dialogue.

Figure 3-7 Runtime Error

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 10/21

4- Description

4-1 Opening Session

To open the driver session, the kipwx Initialize With Options.vi is used.

Although the prefix kipwx, which is applied to the vi (function) is different depending for

each instrument driver, this naming convention is applied for all the IVI-C instrument drivers

Figure 4-1 Initialize With Options.vi Help

Notes:

 As a terminology of IVI-C and VXI Plug&Play Instrument Driver, the term <prefix> is frequently
used. This is an identifier name that is given for each instrument driver, and kipwx is the one for
this guidebook. For example, a generic expression <prefix> Initialize.vi specifies kipwx
Initialize.vi for the kipwx instrument driver.

 Every vi (driver function) other than <prefix> Initialize.vi and <prefix> Initialize With
Options.vi has instrument handle (in) parameter at the upper-left corner of the VI.

 Every vi (driver function) other than <prefix> Close.vi has the output parameter instrument
handle out at the upper-right corner of the VI. This shall be connected to the instrument
handle (in) of the next vi.

 <prefix> Initialize.vi is remained for the compatibility with VXI Plug&Play drivers. This is
equivalent to <prefix> Initialize With Options.vi with exception that option string cannot

be specified.

Now let 's talk about parameters of the kipwx Initialize With Options.vi. Every

IVI instrument driver has an Initialize With Options.vi, which is defined by the IVI

specifications. This function has the following parameters.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 11/21

Table 4-1 Initialize With Optionsのパラメータ

Parameter Type Description

Resource Name String VISA resource name string. This is decided according to
the I/O interface and/or address through which the
instrument is connected. For example, a LAN-based
instrument having IP address 192.168.1.5 will be
TCPIP::192.168.1.5::INSTR (when VXI-11case).

Id Query Boolean Specifying VI_TRUE performs ID query to the

instrument.

Reset Device Boolean Specifying VI_TRUE resets the instrument settings.

Option String String Overrides the following settings instead of default:

RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports DriverSetup features.

Resource Name specifies a VISA address (resource name). If Id Query is VI_TRUE, the

driver queries the instrument identities using a query command such as "*IDN?". If Reset
Device is VI_TRUE, the driver resets the instrument settings using a reset command such
as "*RST".

Option String has two features. One is what configures IVI-defined behaviours such as

RangeCheck, Cache, Simulate, QueryInstrStatus, RecordCoercions, and

Interchange Check. Another one is what specifies DriverSetup that may be

differently defined by each of instrument drivers. Because the Option String is a string

parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

Names and setting values for the features being set are case-insensitive. Since the setting
values are ViBoolean type, you can use any of VI_TRUE, VI_FALSE, 1, and 0. Use commas

for splitting multiple items. If an item is not explicitly specified in the Option String
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are VI_TRUE for RangeCheck and Cache, and VI_FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It

can specify items that are not defined by the IVI specifications when invoking the
InitializeWithOptions function, and its purpose and syntax are driver-specific.

Therefore, specifying the DriverSetup must be at the last part on the Option String

parameter. Because the contents of DriverSetup are different depending on each driver,

refer to driver's Readme document or online help.

4-2 Channel Access

When supporting power supply and/or oscilloscope instruments, the IVI instrument driver is
generally designed assuming the instrument has multiple channels. Therefore, driver

functions operating instrument panel settings often have the channel name parameter,

which specifies the channel.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 12/21

Figure 4-2 Configure Voltage Level.vi Help

As this guidebook uses the KikusuiPwx (kipwx) driver that operates the DC power supply, we
use a channel name that specifies the channel name to controlled. Above example uses a

blank string, however black is applicable to the case when there is only one channel. You
need explicitly specify a channel name when multiple channel model, and the name will be
normally such as "Output1". (PWX assigns channel numbers from zero under Multi-Drop

expanded operations, so the first channel name is "Output0".) Detail about channel names

that can be actually used, refer to the driver online help.

4-3 Closing Session

To close the instrument driver session, use the kipwx Close.vi function.

Figure 4-3 Close.vi Help

5- Example Using Class Drivers

Now we explain how to use instrument class drivers. By using instrument class drivers, you

can swap the instruments without recompiling/relinking your application codes. In this case,
however, IVI-C instrument drivers for both pre-swap and post-swap models must be

provided, and these drivers both must belong to the same instrument class. There is no

interchangeability available between different instrument classes.

5-1 Virtual Instrument

What you have to do before creating an application that utilizes interchangeability features is

create a virtual instrument. To realise interchangeability features, you should not write
codes that are very specific to a particular IVI-C instrument driver (e.g. direct call of
kipwx_init function) and should not write a specific VISA address (resource name) such

as " TCPIP::192.168.1.5::INSTR ". Writing them directly in the application spoils

interchangeability.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 13/21

Instead, the IVI specifications define methods to realise interchangeability by placing the

external IVI Configuration Store. The application indirectly selects an instrument driver
according to contents of the IVI Configuration Store, and accesses the indirectly loaded

driver through the class driver that has no dependency to specific instrument models.

The IVI Configuration Store is normally C:/ProgramData/IVI

Foundation/IVI/IviConfigurationStore.XML file and is accessed through the IVI

Configuration Server DLL. This DLL is mainly used by IVI instrument drivers and some
VISA/IVI configuration tools, not by end-user applications. When using LabWindows/CVI,

the NI-MAX (NI Measurement and Automation Explorer) software provided by National
Instruments allows you to perform IVI driver configurations.

Creating Driver Session

After launching NI-MAX, refer to the IVI Drivers node on the tree. Right-click on the
Driver Session then select Create New (case sensitive)... menu to create a new Driver
Session. Being asked for its name, give the name mySupply. Selecting General tab you

will see the following screen.

Figure 5-1 NI-MAX General Tab

Creating Hardware Asset

Subsequently select the Hardware tab to show the hardware asset management screen.

The hardware asset specifies what interface route your actual instrument is connected
through. Here you click the Add button to create a new Hardware Asset. Being asked for
its name, give the name mySupply again, furthermore specify a valid VISA address

(TCPIP::192.168.1.5::inst0::INSTR in this case) though which the actual instrument is
connected, as Resource Descriptor.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 14/21

Figure 5-2 NI-MAX Hardware Tab

Setting Linkage for Software Module

Subsequently select the Software tab to show the software module management screen.
The software module specifies the instrument driver module (DLL module). Here select

kipwx from the Software Module list.

Figure 5-3 NI-MAX Software Tab

Creating Virtual Name

Subsequently select the Virtual Names tab to show the virtual name management screen.

Normally, when channel names are related such as for power supply drivers, valid channel

names are different depending on the drivers. Therefore, these channel names also have to
be virtualized. Click the Add button to add a virtual name, then type "Track_A" for

Virtual Name. Furthermore from Physical Name list, channels names that are working for
the actual instrument are enumerated, On the list, IviDcpwrChannel!!Output0 is only

shown so select it, or simply type Output0.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 15/21

Notes:

 Depending on driver's implementation or configuration of multi-channel power supplies, not all the
channel names may be shown. As for valid channel names for each driver, refer to driver's
Readme.txt or online help.

Figure 5-4 NI-MAX Virtual Names Tab

Creating Logical Name and linkage

Finally create a logical name. The logical name is equivalent to the name of virtual
instrument configured with the NI-MAX. Refer to the IVI Drivers node on the tree. Right-

click the Logical Name then select the Create New (case-sensitive) menu to create the
new logical name. Being asked for its name, give the name "MySupply". Furthermore,

select mySupply from the Driver Session list.

Figure 5-5 NI-MAX General Tab

Configuration for the virtual instrument is complete. Click the Save IVI Configuration

button placed at the upper screen on the NI-MAX to save changes.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 16/21

5-2 Adding Controls and Functions

First, create a new application. Open the Front Panel window, place an error in cluster and
an error out cluster.

Figure 5-6 Front Panel

Next, open the Block Diagram window, then open the function palette for the IviDCPwr class
driver (wrapper). The function palette will be found through the context menu

Instrument I/O IVI Class Drivers DC Power Supply.

Notes:

 When IVI Class Drivers palette is not found, appropriate version of IVI Compliance Package may

not be installed.

Figure 5-7 IviDCPwr Function Palette

Furthermore place Initialize With Options.vi, Close.vi on the block diagram.

Furthermore add Configure Voltage Level.vi, Configure Current Limit.vi,

Configure Output Enabled.vi, from Configuration palette.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 17/21

Figure 5-8 Block Diagram

At the class driver's initialization function, specify a virtual instrument (IVI Logical Name)
instead of VISA resource name (VISA address). Here specify mySupply that was configured

with NI-MAX.

Figure 5-9 Params for Initialize With Options

Subsequently, add parameters that set voltage, current, and output. Here, we set 20V/2A
and the output ON.

Figure 5-10 Params for Configure Functions

Mind the string -- "Track_A". This is the target channel name for the DC power supply to

be controlled. Details are described later.

Finally, wire the controls/functions between error in and error out clusters as like the
picture below. Not only connecting error ins/outs, but make sure to connect instrument

session (handle) wires also.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 18/21

Figure 5-11 Open/Configure/Close

6- Description

6-1 Opening Class Driver Session

To open the driver session, the IviDCPwr Initialize With Options.vi is used. The

prefix IviDCPwr, which is applied to the vi (function), is specific to the IviDCPwr class driver.

In this program that utilizes the class driver, there never be dependency to instrument
drivers of specific models such as kipwx (our PWX series DC Power Supply) or AgN57xx

(Agilent N5700 series DC Power Supply).

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 19/21

Figure 6-1 Initialize With Options.vi Help

Class drivers are different with normal instrument drivers, thus you cannot pass VISA address
to the Initialize With Options.vi directly. Instead, pass the logical name

"mySupply" configured in the NI-MAX. The class driver, by referencing to the logical name,

searching for the appropriate instrument driver DLL (Software Module) and VISA address
(Hardware Asset), then at last invokes the kipwx Initialize With Options.vi

indirectly.

Although the contents for Option String (Cache、Range Check, Record Coercions,

Interchange Check, Query Instrument Status, and Driver Setup string) are exactly the same

as when using the specific driver, the default values for the case the parameter was omitted

are different. The default values when using a specific driver were the ones that were
defined by the IVI specifications, however, the default values when using the a class driver

are the ones that are configured at the Driver Session in the IVI Configuration Store. In
any cases, what explicitly specified through OptionString parameter of Initialize
With Options function is the first priority.

6-2 Channel Access

When supporting power supply and/or oscilloscope instruments, the IVI instrument driver is

generally designed assuming the instrument has multiple channels. Therefore, driver
functions operating instrument panel settings often have the channel name parameter,

which specifies the channel.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 20/21

.

Figure 6-2 Configure Voltage Level.vi Help

This example uses the class driver specifying the channel name "Output0" that can only be

applied to a specific instrument driver (kipwx driver in this case). This method can control the
instrument, however, using names that depend on specific instrument driver will spoil

interchangeability. For example, a valid channel name for AgN57xx instrument driver is
"Output1".

In above NI-MAX configuration, we added the virtual name "Track_A" and configured as it
can be converted to the physical name "Output0". Therefore we can use the virtual name

for the channel name.

When exchanging the instrument drivers, change the IVI configuration for Hardware (VISA

address for instrument I/O connection) set by Driver Session, Software (instrument driver to
be used), and Physical Names (physical name to which the virtual name is mapped), so that

operation can continue to work.

Notes:

 The setting info of IVI Configuration is stored in C:/ProgramData/IVI
Foundation/IVI/IviConfigurationStore.xml. Do not edit this XML file by hands.

 The IVI Configuration is commonly shared between all 32bit/64bit T&M applications and all log-on
users in the same PC.

6-3 Closing Session

To close the instrument driver session, use IviDCPwr Close.vi.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 21/21

Figure 6-3 Close.vi Help

6-4 Exchanging Instruments

Example shown so far were set to use kipwx instrument driver as the virtual instrument

configuration. Now what happens if changing the instrument to the one that is hosted by
AgN57xx driver (Agilent N5700 series DC Power Supply)? In this case, you don't have to

recompile/relink your application, however you have to change the configuration for IVI
Logical Name (virtual instrument). Basically the configuration shall change:

 Software Module in Driver Session tab (kipwxAgN57xx)

 map target of Virtual Names (Output0Output1)

 IO Resource Descriptor in Hardware Asset (changing to the VISAaddress of post-swap
instrument)

Once the configuration is properly set, the above example will function with the post-swap

instrument without having to recompile.

Notes:

 The interchangeablity feature utilizing IVI class drivers does not guarantee the correct operation
between pre-swapping and post-swapping instruments. Please make sure to confirm that your
system correctly functions after swapping the instruments.

IVI Instrument Driver Programming Guide
Product names and company names that appear in this guidebook are trademarks or registered
trademarks of their respective companies.
©2012 Kikusui Electronics Corp. All Rights Reserved.

